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Abstract: This paper presents a rigorous diabatic formulation for the electron transfer between two deformable structured 
ion cores. The electronic overlaps and interaction matrix elements are evaluated within a model that considers only the active 
electron explicitly. The exact relationship between the diabatic matrix elements and the adiabatic electronic energies of the 
total system is used to compare the results of our model with those from previous ab initio calculations. The agreement for 
the H2

+/H2 system at various geometries strongly supports the adequacy of the one-active-electron model. Within this model 
the electronic-vibrational interaction matrix elements can be evaluated directly and efficiently, thus allowing the first detailed 
test of the Franck-Condon approximation for electron-transfer processes. It is shown that the Franck-Condon approximation 
leads to inaccuracies of less than 10% except at very small center of mass separations. 

I. Introduction 

The role of vibrational and electronic energy in gas-phase 
electron-transfer reactions is a topic of increasing interest both 
experimentally1"12 and theoretically.13"18 Experimental mea­
surements have succeeded in providing either initial state selected 
total integral cross sections or final state selected integral and 
differential cross sections. Fully resolved state-to-state data have 
not been determined, but are expected in the near future. 

In theoretical investigations, the dynamics of electron transfer 
can be treated rigorously within the arrangement channel for­
mulation of chemical reactions.19"21 This has been presented in 
a totally quantum mechanical formalism for heavy-atom reactions 
by Diestler,19 and later for electron-transfer reactions by Schmalz, 
Stechel, and Light.20 Further developments can be found in the 
recent article of Top and Shapiro.21 The semiclassical impact 
parameter treatment, predating the above work by a few years, 
was presented in the seminal paper of Bates and Reid.17 Their 
procedure used the time-dependent Schrodinger equation for the 
internal motion and a straight line classical path for the relative 
translational motion. Flannery, Moran, and co-workers18 de­
veloped a better description of the trajectory in this semiclassical 
formulation. Recently, Becker16 has provided accurate quantum 
mechanical results for reaction 1 using a model potential. These 

O2
+(V1) + O2(V2) - O2

+(V1') + O2(V2') direct (D) 
- O2(V2') + O2

+(V1') exchange(X) (1) 

have been reproduced with quantitative accuracy by the semi-
classical energy conserving trajectory (SCECT) procedure,14 which 
is formally identical with the multistate orbital treatment of 
Flannery, Moran, and co-workers.18 
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Although the dynamics can be treated accurately at modest 
computational expense (especially within the SCECT procedure), 
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COORDINATES 

nuclear separations* R,, = X1 - X: 

Rn = (RA,RB) 

electronic separations^ = x - x-

Figure 1. Coordinates and masses for the electron transfer between two 
diatomic ion cores A+ and B+. 

the agreement with experimental total cross sections2b is unsat­
isfactory even for the simple symmetric charge-transfer reaction15 

in eq 1. This points to the inadequacy of the present models for 
the interaction potentials in electron-transfer reactions. 

In this article, we focus on symmetric electron-transfer processes 
for which two basic assumptions17 about the interaction potentials 
are generally invoked: (1) the interactions are only weakly de­
pendent on the neutral's and ion's bond lengths; and (2) the 
interactions are independent of the neutral's and ion's orientation. 
The former yields vibrational coupling matrix elements as the 
direct overlap of ion and neutral vibrational wave functions, while 
the latter leads to spherically symmetric interactions. On the basis 
of these approximations, Bates and Reid17 evaluated the inter­
actions for the H 2

+ / H 2 system using the accurate single-center 
Slater orbital expansion of Joy and Parr22 for the H 2 wave 
functions and the exact prolate spheroidal wave functions23 for 
H 2

+ . Arguing quite correctly that such a procedure would be 
extremely difficult for heavier systems, Flannery, Cosby, and 
Moran18a introduced two further assumptions, both concerned with 
the dependence of these spherically symmetric interactions on 
relative translational separation, R: (3) the interactions that do 
not couple the different electronic arrangements are Morse 
functions; (4) the interactions responsible for electron exchange 
are determined from the difference between Sato anti-Morse and 
Morse functions. 

The central purpose of this paper is to remove these approxi­
mations through the development of a simple but accurate model 
interaction for the exchange of a single active electron between 
two deformable, structured cores. This is accomplished without 
parametrization by using a two-term LCAO for each molecule 
combined with enforcement of the correct asymptotic long-range 
form24 for the atomic orbitals. Comparison to ab initio CI results25 

for the H 2
+ / H 2 system demonstrates the predictive ability of the 

model even at small separations. 
In the next section we present the dynamical equations gov­

erning electron-transfer reactions in the diabatic or chemical 
reaction formulation. The model for the interaction potential is 
then developed; the diabatic results are related to the standardly 
computed adiabatic interaction energies; and the integrals are 
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59, 5494. (b) Moran, T. F.; Flannery, M. R.; Cosby, P. C. Ibid. 1974, 61, 
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explicitly evaluated for the H 2
+ / H 2 system. We compare the 

predictions to the ab initio results of the Borkman and Cobb25 

in section III. Section IV contains a detailed test of the adequacy 
of the Franck-Condon approximation for electron-transfer re­
actions. A brief conclusion appears in section V. 

II. Theory 
A. Dynamical Equations. We consider the exchange of one 

active electron between two deformable, structured ion cores, A+ 

and B + . The two arrangements are direct, D = (A,B+), and 
exchange, X = (A+ ,B), and will be denoted by the index a. In 
this paper both cores are considered to be diatomic ions, but 
extension to other systems may be made in a similar way. The 
coordinates and masses of the system are defined in Figure 1. 
Various mass combinations are defined as follows: 

heavy particles 

electron 

Ma = 

M A = Wi + W2 

MA = W1W2/MA 

MB = w 3 + W4 

MB = w 3 w 4 / M B 

M = MA + MB 

M = MAMB/M 

Me = W e M / ( w e + M) 

= mtMK/(mt + MA) a = D 
w e M B / ( w e + M%) a = X 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(2f) 

(3a) 

(3b) 

We shall use atomic units throughout, but w e will be shown 
explicitly. The total Hamiltonian in the center of mass system 
is given by 

H(r,R,R„) = T(R) + T(Rn) + &aKr,R,Rn) (4) 

where 

T(R) = 
2/t 

7 W = - T ^ V * A
2 - - ^ - V * B

2 

2/uA 2MB 

(5) 

(6) 

H^ is the electronic Hamiltonian which may be written as 

H^\r,R,Rn) = 
J(f) + (XA+) + J^B+) + jAA+,B+) + jy(e,A+) + ^e1B

+) (7) 

with 

T(?)=-^r2 

2Mc 
(8) 

0A+) _ frozen c o r e potential for A + (9a) 

JXB+) _ frozen c o r e potential for B + (9b) 

J/(A+,B+) = interaction between the two frozen cores (9c) 

JXc1A
+) = interaction of the active electron with A + (9d) 

JAe1B
+) _ interaction of the active electron with B + (9e) 

Equation 7 can be rewritten in terms of the isolated (/?-»<») 
molecular Hamiltonian in the a th arrangement: 

H^Kr,R,Rn) = rfdK7aA) + VaW(ra,R,Rn) (10) 

which defines the interaction operator, Ka
(°p), in the a th ar­

rangement as the difference between ffd)(r,R,Rn) and H^el)(ra,Rn). 
The latter is given explicitly as 

rf°[\raA) = -T-V? 2 + ^ A + ) + J*B+) + ^a) ( H ) 
2M<* ° 
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where 

yia) _ K^'A+) a = D 
JAe1B

+) a = X 

Due to the coordinate transformation of the electronic kinetic 
energy operators20 in eq 8 and 11, the interaction K0

(op)_contains 
an explicit cross-derivative operator of the form V?a- V^). We 
will symbolize the interaction without this cross-derivative operator 
by the term Va. 

The isolated molecular eigenfunctions are assumed to satisfy 
the Born-Oppenheimer approximation, which implies 

[H^\ra,Rn) - taN(Rn)]*N«(?a£j = 0 (13) 

[T(Rn) + taN(RD) - iaNV]<t>v«*(Rn) = 0 (14) 

The electronic and vibration-rotation quantum numbers of the 
entire system are denoted by the collective indices N and V, 
respectively. 

Expansion of the total wave function as 

y-N\Rn) 

For H2
+/H2 the velocity is ~0.2 at 1 keV while for heavier systems 

this approximation is even better. Hence we focus on determining 
S and V in this article, but for completeness the matrix ft is 

(12a,b) evaluated in the appendix for our model of the H 2
+ /H 2 system. 

The particular combination S-1V, appearing in the dynamical eq 
22b, shall be referred to as the "effective interaction potential" 
and denoted by W; i.e., 

W = S-1V (24) 

*„ vyir,R,Rn) = E Fa,N,VaNV(R)iN*aXr^Rn) 4>y~ 

(15) 

and substitution into the time-independent Schrodinger equation 
leads via standard techniques to the matrix equations 

(IT(R) + S-'fi.Vjj + S-1V + * • 

[H]a N'V',aNV-

IE)F(R) = 0 

1 

MA 
<* jV 'a <PV'a 'N ^Z "t>N

a<l>va'N> 

(16) 

(17) 

D (18a) 

—<*va0va>Hi' 
Mi 

VN
01DV01^ 

a = X (18b) 

[ V W F W = (^a'<t>ya''N'\Va(ra,R,RnmN
a<t>v"'N) (19) 

[l]a'N'V,aNV = ^aa'^NN'^ W6CtNV (20) 

Equations 16-20 provide the fundamental time-independent theory 
of electron-transfer reactions for two possible arrangements with 
any number of electronic-vibrational-rotational states in each 
arrangement. These equations are the generalization to diatomic 
molecules of the forms given for electron transfer between atoms 
in ref 20. (Note that the matrices Q and He in that paper can 
be combined through the use of the electron reduced mass na in 
the different arrangements.) 

In the time-dependent semiclassical theory, the expansion in 
eq 15 is replaced by 

<HaNV(r,R(t),R.n) = 
T. Ca,N,r,aNV(t)^N,aXra'A)^va''NXRn) exp(-i(a,N,yt) (21) 

a'N V 

which yields the dynamical equations in standard form 

i exp(Uf) S exp(-i£f) C = exp(i«0 V exp(-ier) C (22a) 
which can obviously be rewritten as 

iC = exp(i«<) S"'V exp(-i«0 C (22b) 

Equation 22b must be supplemented by Hamilton's equations to 
determine the trajectory and thus the time dependence of R(t). 
This can be accomplished at various levels of sophistication, e.g., 
straight-line and curved trajectory, etc., but this is not of central 
importance to the present development of an accurate model for 
S and V. 

Inherent in this semiclassical formulation is the neglect of the 
cross-derivative term, S-1II-V^ in eq 16. Assuming FaNV(R) <* 
exp(LP-i?) and noting that MA, MB, and n are on the same order 
lead to the justification of this approximation when the relative 
translational velocity in atomic units is much less than one: 

B. Model for the Interaction Matrix. For the remainder of 
this article, we asume that a single electronic level suffices to 
describe each arrangement, and hence the index N is suppressed. 
Expanding each molecular electronic wave function in a two-term 
LCAO yields 

*D(?A;i?n) = C,f,(?el) + C2f2(re2) (25a) 

*x(h-A) = CMr^) + CAU?«) (25b) 

The electronic-vibrational wave functions are simply products of 
eq 25a and 25b with </>^A3+)(^„) and </>v

(A+'B)(^n). respectively. 
The matrix elements with respect to these vibrational coordinates 
can be evaluated after first performing the integration over 
electronic coordinates. We signify all quantities resulting from 
electronic integration by suppression of the argument "?„". 

The overlap matrix is given by 

S(^,^n) = 
1 ^ D X 

^ X D 1 
(26) 

where 

S0 xCR^n) = fdrA 4>D(rA;Rn)* * x (? B ^n) (27a) 

= SXD(R,Rn)* (27b) 

The integration in eq 27 requires only two-center integrals, which 
can be performed quite easily for Slater type orbitals.26 

The non-cross-derivative parts of the interaction potentials in 
the D and X arrangements are 

VD(rA,R,Rn) = K<A+>B+> + F<c'B+> (28) 

Vx(rB,R,Rn) = K<A+-B+) + K<e-A+> (29) 

The electron-core interaction is assumed to be a point-charge 
interaction, with each nucleus plus nonactive electrons having an 
effective charge qt. 

(30) 

J/(e.B+) 

? l 

' e l 

Qi 

r*i 

Qi 

r* 

QA 

'e4 
(31) 

For singly charged homonuclear ion cores, the effective charge 
on each nucleus must be V2 in order to satisfy charge conservation. 
For heteronuclear ion cores, the effective charge may be estimated 
by taking into account the electron affinity at each nucleus. The 
electronically integrated effective interaction potential matrix is 

V/(R,Rn)= K<A+'B+)l + S " 

lTxD(e-B+) 

DX 

' X X 

(e,A+)" 

(e,A+) 
(32) 

with obvious notation. 
It is interesting to note that the core-core interaction, 0 A ,B \ 

appears only in the diagonal terms of the effective interaction 
matrix. If a straight-line trajectory is used in the dynamical 
equation 22b, I^A ,B ' can be ignored for symmetric systems where 
^DD'6 '8 ' = ^xx(e,A '. since in such cases the diagonal terms can 
be eliminated by a phase transformation17 on the amplitudes C. 
For a realistic trajectory,14'15'18 one must specify fAA+'B+) even 

(2E/n)[<2 « 1 (23) (26) Roothan, C. C. J. J. Chem. Phys. 1951, 19, 1445. 
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though it does not couple the two different electronic arrangements. 
In the present model, we assume 

V' ̂•B+> = E E | ^ + Y ^ | (33) 

The first term in the parentheses is simply the point charge in­
teraction and the second term represents the short-range repul­
sion27 due to added electron-electron repulsions. The parameters 
7 and rj may be obtained from a simple model proposed by Bohm 
and Ahlrichs.27 

From eq 25, and 30, and 31, we have 

JW'.B+> = - I I tqtCfi/uk (34a) 
(=1 j=\ k=l 

Kxx
(e'A+) = ~ E E 1Iq^1CjI1J11 (34b) 

,=3 j=3 k=\ 

K D X ( ^ + ) = - t E Zq1^C1CjI1J, (34c) 
I=I ; = 3 * = i 

KXD
(e3+) = - z i ZqIcQCjI1J11 (34d) 

, = 3 ;=1 i = 3 

where 

Ink= fdr e i f,*(re,) i-/?ej)— (35) 
^ rtk 

is in general a three-center integral. For the cases that i = j , k 
= i, or k = j , eq 35 reduces to a two-center integral, which we 
evaluate analytically.26 In other cases, we make the Mulliken type 
approximation: .28 

'ijk Hi+ij/^-^^w (36) 

if i and j belong to the same molecule, and 

hjk = hjj (37) 

if (' and j belong to different molecules. These approximations 
are expected to be more accurate when either the bond length of 
the diatom decreases or the separation of the two molecules in­
creases. In the next section we demonstrate that for H2

+ /H2 the 
approximation is still fairly good even at small separation. 

III. Application to H2VH2 

Borkman and Cobb25 have performed ab initio calculations for 
the ground and first excited state of the H4

+ system. For a 
symmetric configuration these correspond to gerade and ungerade 
levels and we shall use this terminology throughout even though 
for asymmetric configurations the mirror plane symmetry is absent. 
Since ab initio calculations are performed at fixed nuclear ge­
ometries, the terms involving T(R) and Kg in eq 16 vanish and 
the vibration-rotation index V can be suppressed. The g-u energies 
are then the solution of the 2 X 2 secular equation, 

\W(R,Rn) + e(Rn) - lE(R,Rn)\ = 0 (38) 

with the result 

EAR A) = UWxx + WDD + ex + eD) -
2 

\[(WXX 

1 

^DD + <x - <D)2 + 4 ^ X f T x 0 ] 1 / 2 (39) 

EU(R,RJ = ^ (^xX + WDD + ix + 6D) + 

^ [ (^xx - ^DD + «x " «D)2 + 4 ^ D X ^ X D ] 1 / 2 (40) 

Since Waa, vanishes at R —• °°, the values of «D and ex
 c a n De 

identified as the asymptotic values of E„ and Eu, respectively. 

(27) Bohm, H. J.; Alrichs, R. / . Chem. Phys. 1982, 77, 2028. 
(28) Mulliken, R. S. J. Phys. Chem. 1952, 56, 792. 

From eq 32, 39, and 40, we see that the energy splitting, F11-F8, 
is independent of j ^ A + , B + ) . Therefore, to predict the R and R„ 
dependencies of the energy splitting, we need to specify only the 
atomic orbitals involved in eq 25 and not the parameters y and 
i) in eq 33. A reasonable choice is 

£ = (2IP)1/2 

(41) 

(42) 

where IP is the ionization potential (in atomic units) of H2. 
Equation 42 is based on the long-range behavior of molecular 
electronic wave functions.24,29 The ionization potential has also 
been incorporated in the interaction matrix for charge transfer 
in atom/atom systems.3031 When the model presented in section 
HB is used, the effective interaction matrix elements can be 
evaluated as 

Wnn = p(A\B+) + 1 

Wyy = ^A+'B+> + 

1 SDXSXD 

1 

1 SnYiS' 

[ f W e ' B + ) - S D X P W ^ + ) ] (43a) 

[>We'A+)-SXDKDX<=.A+>] 

^ X D = 

1 

1 - S0xSxD 

1 

(43b) 

[>We-A+)-SDXKxx<=.A+>] (43c) 

[KXD<<'B+>-SXDKDr>
B+>] (43d) 

1 ~ SDX1SXD 

where the particular quantities are given by 

SDx = SXD = CACBE ZF(SR1J) 
< - l ] - l 

CA = C1 = C2 = [2 + 2 F ( ^ A ) ] - ' / 2 

CB = C3 = C4 = [2 + 2 F ( ^ 8 ) ] - ' / 2 

F(jc) = ( 1 + x + -x2 J exp(-x) 

KDDC'B+> = - E E — + -f-d + HR1J) exp(-2|*„) 
(-1 j-i^-Kij Ka 

Kxx
feA+) = - E E T ^ - + -^-(1 + SRy) e x p ( - 2 ^ ) 

/=1 j-3 4Ru 

(44a) 

(44b) 

(44c) 

(44d) 

(44e) 

(440 

*We-A+> = - |C A C B E E d + **<,) e x p H ^ ) (44g) 
I=I j=3 

T/ (e,B+) - T/ (e,A+) yXD ~ ^DX (44h) 

As in the ab initio calculations, the bond lengths are set to the 
equilibrium values (RA = 1.401 au, RB = 1.988 au), and ex - eD 

= 0.0681 au due to the difference in vibrational potentials of H2 

and H2
+. The ionization potential of H2 is known32 to be 0.567 

au, which yields £ = 1.065 au. We have evaluated the energy 
splitting as a function of intermolecular separation at four ge­
ometries A, C, F, and I as defined by Borkman and Cobb25 and 
reproduced in Figure 2. Table I compares the results of this model 
with the ab initio SD-CI calculations. (Note that the 2 x 2 CI 
results, which were calculated for the other geometries in ref 25, 
are not accurate except for very small R.) Despite its simplicity, 
the present model provides splittings in fairly good agreement with 
the ab initio calculation. Except for geometry A at very short 
distances where extreme overlap of the atomic orbitals occurs, 
the predictions of the order of energy splitting, A > F > C, is in 

• exp-(29) The long-range wave function is exactly proportional to /•" {,'s < 
(-Jr) but £ = 1.065 so that the power of r is nearly 0. 

(30) Rapp, D.; Francis, W. E. J. Chem. Phys. 1962, 37, 2631. 
(31) Olson, R. E.; Smith, F. T.; Bauer, E. Appl. Opt. 1977, 10, 1848. 
(32) Huber, K. P.; Herzberg, G. "Constants of Diatomic Molecules"; Van 

Nostrand-Reinhold: New York, 1976. 
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Table I. Energy Splitting as a Function of Intermolecular Distance and Orientation0 for H2
+/H, 

A C F 

R 

1.25 
1.50 
1.75 
2.00 
2.50 
3.00 
3.50 
4.00 
5.00 
6.00 
OO 

approx6 

0.6914 
0.6967 
0.6556 
0.5833 
0.4262 
0.3007 
0.2120 
0.1521 
0.0911 
0.0728 
0.0681 

ab initioc 

0.9246 
0.8021 
0.5779 
0.3649 
0.2191 
0.1539 
0.0931 
0.0766 
0.0681 

approx 

0.8179 
0.6567 
0.5296 
0.4306 
0.2914 
0.2029 
0.1460 
0.1103 
0.0781 
0.0700 
0.0681 

ab initio 

0.7930 

0.5430 
0.4453 
0.2872 
0.1969 
0.1398 
0.1054 
0.0765 
0.0705 
0.0681 

approx 

0.8330 
0.7009 
0.5894 
0.4942 
0.3463 
0.2436 
0.1738 
0.1280 
0.0834 
0.0711 
0.0681 

ab initio 

0.7238 

0.5011 
0.3122 
0.2157 
0.1504 
0.1093 
0.0749 
0.0686 
0.0681 

approx 

0.7724 
0.6186 
0.5019 
0.4112 
0.2822 
0.1984 
0.1438 
0.1093 
0.0779 
0.0700 
0.0681 

ab initio 

0.7758 

0.4977 
0.2979 
0.2027 
0.1387 
0.1049 
0.0764 
0.0705 
0.0681 

' All quantities are given in atomic units. b Predictions of the present model. c Results from ref 25. 

H2-H2 GEOMETR1ES 

Figure 2. Geometries of the H2
+/H2 system used for comparison to the 

ab initio calculations of ref 25. 
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Figure 3. Energy splittings predicted by this model (—), ab initio SD-CI 
(+ + +) calculations,25 and Sato anti-Morse minus Morse potential 
(O O O) for geometry A in Figure 2. 

accord with the ab initio results. Judging from the excellent 
agreement of geometry C and the correct orientation dependence, 
we believe that the one-active-electron model is quite adequate. 
The poor agreement in geometry A at small separation is most 
likely due to the approximation of the three-center integrals as 
two-center integrals, i.e., eq 36, 37. 

Because accurate ab initio calculations of the energy differences 
between ground and excited electronic states are so difficult for 
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Figure 4. Energy splittings predicted by this model (—), ab initio SD-CI 
(+ + +) calculations,25 and Sato anti-Morse minus Morse potential 
(O O O) for geometry C in Figure 2. 

more complex systems, following Sato, several researchers18 as­
sumed that the ungerade energy could be approximated by 

En(R) = -D&xp[-2I3(R Re)] + 2 CXpHJ(K-*,)]I (45) 

where the gerade energy is represented by a Morse potential, 

E1(R) = Dt{cxp[-20(R - R,)] - 2 exp[-/3(i? - /?,)]} (46) 

In order to eliminate any influence of orientation averaging, we 
considered eq 45 and 46 for each orientation separately. We found 
that for H2VH2 the ab initio results can indeed be fitted extremely 
well by eq 46 by using the following parameters: Dt = 0.0682, 
/3 = 0.75, Re = 3.00 for geometry A and £>e = 0.0291, /3 = 0.85, 
Re = 3.00 for geometry C. However, as shown in Figures 3 and 
4, eq 45 yielded quite poor values for the ungerade energy and 
energy splitting even with the good accuracy for the gerade energy. 

In the present model, the gerade energy can also be calculated 
from eq 39, together with the knowledge of 0A + B +). In eq 33, 
we choose y = 1 and i) = 2£, which is the same exponent that 
occurs in the D-D and X-X terms. The strength parameter y 
could be determined by comparison to SCF calculations of £g, 
as suggested in ref 27; since this only requires the ground energy 
at small internuclear separations, it is a viable procedure. In the 
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Figure 5. Ground-state energies predicted by this model (—) and ab 
initio SD-CI (+ + +) calculations25 for geometry A in Figure 2. 

present study, we used y = 1 and 1.5 with little difference in the 
results, which are shown in Figures 5 and 6 for the former value. 
The general agreement is good, which is entirely adequate for the 
present purposes, since the electron-transfer reaction is mainly 
determined by the energy splitting, not the ground-state inter-
molecular potential. 

IV. A Test of the Franck-Condon Approximation 
The model for the diabatic interactions, presented and tested 

in the previous sections, allows for a detailed computational study 
of the accuracy of the Franck-Condon (FC) approximation in 
electron-transfer reactions. In terms of the "effective" interaction, 
the FC assumption is simply 

<(a,JV)i»|[W(^A)]«iv^l(«'^VO«'> * 
<(a^i7 | (aVtfO^[W(AA, ,*n)U. .w (47) 

Here, the integration refers only to vibrational coordinates with 
the translational and molecular orientation variables fixed. In 
order to emphasize this, we use lower case v's in the bra's and 
kets. Note that the right-hand ^ide of eq 47 must be evaluated 
at some arbitrary bond length, Rn. Although a reasonable value 
is simply the average of the neutral and ion equilibrium bond 
lengths, other values could be utilized. In order to eliminate such 
ambiguity in the test of the FC approximation, we consider the 
ratio 

RaNv.a.NV(R,Rn) - ( ( a , jv ) y | ( a ' ,A> '> ( 4 8 ) 

as a function of vibrational states v and v' for specific rear­
rangement and electronic indices. 

The electron-transfer reaction for which the detailed tests of 
the diabatic interaction model are presented is 

H2
+(V1) + H2(V2) - H2(V2') + H2

+(V1') (49) 

For this reaction, eq 48 becomes 

((D)V1V2IJr0x(R5RA1RB)I(X)V1V2') 
^ D V 1 V 2 , X V , V ( ^ ' ^ A > ' ^ B ) _ 

((D)V1V2I(X)V1V2') 
(50) 

Figure 6. Ground-state energies predicted by this model (—) and ab 
initio SD-CI (+ + +) calculations25 for geometry C in Figure 2. 

Note that the core-core interaction, ]AA+-B+\ does not influence 
this ratio. 

The H2
+ and H2 vibrational eigenfunctions were approximated 

by Morse wave functions, by using the parameters (Dt, ae, Re, 
n) = (2.63779 eV, 1.3614 A"1, 1.052 A, 0.503775 amu) and 
(4.9679 eV, 1.9006 A"1, 0.74144 A, 0.50391 amu) for the ion and 
neutral, respectively.33 Both the (simple product of two) one-
dimensional overlap integrals in the denominator of eq 50 and 
the more complicated two-dimensional integral in the numerator 
of eq 50 were evaluated by using high-order (up to 30 points) 
Gauss-Laguerre integration in each dimension. 

The results of the above procedure are displayed in Figures 7 
and 8 for two different orientations of the neutral and ion and 
for V1 = v2. The total number of quanta, V1-I-V2-I- v / + v/, 
provides a convenient measure of the overall variations in bond 
lengths due to vibrational motion. It is clear that the increase 
of /?DVIV2,XVI'V2'

 w ' t n t o t a ' vibrational quanta signifies a breakdown 
of the FC approximation, but except at very small ion-molecule 
separations the inaccuracy is slight. (Note that the decreasing 
magnitude of the ratio with_translational separation reflects only 
the variation of WDX(R,RA,RB) with increasing R and is irrelevant 
for testing the FC approximation.) 

V. Conclusions 
We have presented a simple one-active-electron model for the 

effective interaction matrix S-1V in electron-transfer processes 
between two deformable, structured cores. The prediction of the 
coupling between different arrangements required only the 
electron-ion core interactions, V^c,x > and 0 e , B ', and the wave 
functions for the active electron in the two arrangements. The 
core-core interaction does not participate directly in the elec­
tron-transfer process but only influences the collisional trajectory. 
It was approximated by a point-charge interaction plus steric 
repulsion. For valence s-orbitals of the atomic cores, the wave 
function of the active electron can be expressed in a linear com­
bination of two atomic orbitals with correct asymptotic forms.24 

In more complicated cases involving p-orbitals, more than two 
such atomic orbitals need to be retained, and for asymmetric 
electron transfer it may be necessary to allow more than a single 

(33) Nicholls, R. W. J. Phys. B 1968, 1, 1192. 
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Figure 7. Test of the Franck-Condon approximation using the present 
model for the D-X coupling in the H2

+/H2 system in geometry A of 
Figure 2. The "ratio" is given by eq 50. Each curve represents the ratio 
vs. total vibrational quanta for a specific intermolecular separation -R. 
The small variation of the ratio with total vibrational quanta indicates 
a slight breakdown of the FC approximation. (The decrease of the ratio 
with increasing R simply reflects the decrease of the interaction potential 
with R.) 

GEOMETRY C 

— I 1 1 i 1 1 1 

. 00 S.00 IS.00 24.00 32.00 40,00 49,00 
T O T n L V I B QUr th ' ta j 

Figure 8. Same as Figure 7 except for geometry C in Figure 2. 

electronic state N. Testing of the utility and accuracy of the 
present approach is these situations must await suitable ab initio 
CI calculations. 

An initial test of this approach was presented for the H2
+ZH2 

system. The exact relationship between the diabatic matrix el­
ements and the adiabatic gerade-ungerade energies was utilized 
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for comparison of the results of this model with those from ab 
initio calculations.25 The agreement for the energy splittings in 
the H2

+ /H2 system supports this one-active-electron picture. As 
an application we tested the Franck-Condon approximation for 
the vibrational-state dependencies and found it to be generally 
accurate except at very small intermolecular separations. 

We expect the present model to be most useful in the treatment 
of the dynamics of election-transfer processes for three reasons. 
First, both orientation and bond-length dependencies are included 
in the overlap and potential matrices, S and V, respectively, thus 
allowing for a complete treatment of all dynamical degrees of 
freedom. Second, the correct description of the long-range in­
teraction potentials is incorporated, which is most important for 
symmetric electron transfer in which large cross sections are found. 
Third, the evaluation of S and V and their derivatives is not unduly 
complicated or time-consuming, which is an important consid­
eration since thousands of such evaluations are required for each 
impact parameter in the semiclassical trajectory calculations. 
Detailed studies of the dynamics are now under way and will be 
reported in future publications. 
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VI. Appendix: Evaluation of the Matrix Elements of ft 

We are concerned here only with the integration over electronic 
coordinates. The integration over vibrational coordinates can be 
carried out with numerical methods, as mentioned in section IV. 
According to eq 18 the integrals involved in ft have the following 
form: 

ha = JdT *a'VFo*
a (A.l) 

For the H 2
+ /H 2 system, $ a is given by eq 25, 41, and 44b-d. 

Thus, 

/XD = cAcJ: £ Ur r,v> ry 
i = 3 ; = l * > ' 

= SCACBZ £ f dr f , i /„ (A.2.A.3) 

The unit vector rej may be expressed in terms of fixed cartesian 
coordinates. Letting Rj1 (pointing from j to i) be the z-axis, we 
find that integration over x and y coordinates (xtJ and yej) vanishes. 
Equation A. 3 then becomes 

/XD = -{CAC„i: ERj1 f dr Mjcos 8 (AA) 
(-3 ;=1 *> 

where 6 is the angle between Rj1 and reJ.^ Using spheroidal co­
ordinates, one can obtain, using Ry = -RJh 

/XD = ^ 2 C A C B £ £*, ,(1 + {*„) expHfy) (A.5) 

J 1 = 3 j=\ 

Similarly, we find 

?DX = ~?XD (A.6) 

7DD = 0 (A.7) 
7XX = 0 (A.8) 

We note that the magnitudes of 7Dx and 7XD are comparable with 
KDx(e'A+) and KXD

(e'B ' given in eq 44g-h. Thus, the off-diagonal 
terms of ft are smaller than those of V by a factor of molecular 
mass (MA or M3), which is about 2000 for the H 2

+ /H 2 system. 
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